

Course Code: CSY2015

Student Name: Sharifa Al Jowder

UON ID: 23856007

Module Tutor: Dr. Osama Al Rawi

Assignment title: Microprocessor-Based System

Student Name: Sharifa Al Jowder

UON ID: 23856007

Table of Contents

Part 1 - Solar panel tracking System using Arduino UNO ... 2

YouTube link - SOLAR PANEL TRACKING YOUTUBE LINK ... 2

Introduction ... 3

Code Functionality ... 5

Libraries, Components (Hardware/ software) & Prototype Materials with their Usage 6

List of software used ... 6

List of Hardware components used .. 6

List of materials used for the prototype .. 7

Evaluation of the output: .. 7

Part 1 Code:.. 8

Part 2 – RGB Floodlight ... 11

YouTube link – RGB FLOODLIGHT YOUTUBE LINK ... 11

Introduction ... 13

How code works ... 13

Libraries & Components (Hardware and software) with Their Usage 14

List of software used ... 14

List of Hardware components used .. 14

IR Remote Control Commands, buttons and Actions ... 15

Problems faced during the project ... 16

Evaluation of the output .. 16

Part 2 Code:.. 17

Table of Figures

Figure 1 Snapshot of the Last edited information for the solar panel tracking system 2

Figure 2 Image of the final design for the solar panel tracking system .. 2

Figure 3 Snapshot of the Last edited information for RBG FLOODLIGHT 11

Figure 4 Image of the final design for the RGB FLOODLIGHT ... 11

Figure 5 Project prototype using Tinkercard app for 3D design for the RGB FLOODLIGHT 12

Student Name: Sharifa Al Jowder

UON ID: 23856007

Part 1 - Solar panel tracking System using Arduino UNO

YouTube link - SOLAR PANEL TRACKING YOUTUBE LINK

Figure 1 Snapshot of the Last edited information for the solar panel tracking system

Figure 2 Image of the final design for the solar panel tracking system

https://youtu.be/1I80rmons4k?si=FtzeDLmZ2-sjlf0E

Student Name: Sharifa Al Jowder

UON ID: 23856007

Introduction

Solar energy plays a vital role in renewable energy and sustainable development by reducing

dependence on fossil fuels. Traditional fixed solar panels, however, lack efficiency as they

cannot track the sun's movement throughout the day, leading to decreased energy output.

This project addresses the issue by creating a solar panel tracking system powered by an

Arduino Uno microcontroller. Photoresistor modules detect light intensity from various angles,

while servo motors adjust the panel's orientation to ensure maximum sunlight exposure. Real-

time voltage readings are displayed on an I2C LCD, offering instant performance insights.

By integrating electronics, programming, and mechanical components, this energy-efficient and

cost-effective solution supports SDG 7: Affordable and Clean Energy and SDG 13: Climate

Action. Enhancing solar panel efficiency contributes to advancing renewable energy technology

and tackling key environmental challenges.

Advantages of the Solar Panel Tracking System Using Arduino UNO

1. Increased Efficiency in Energy Use

Throughout the day, the solar tracking system makes sure that the solar panels stay in

line with the sun's position. In comparison to fixed solar panel systems, this optimizes

energy capture and greatly increases the total power output.

2. Economical Resolution

This system offers a low-cost substitute for conventional sun tracking systems without

sacrificing functionality by leveraging inexpensive parts like light-dependent resistors

(LDRs) and the Arduino UNO.

3. Capability of Hybrid Energy

The technology can be modified to combine solar, wind, and wave energy in hybrid

energy configurations. Consistent energy output is guaranteed by this integration,

which makes it appropriate for a variety of environmental circumstances.

4. Artificial Intelligence (AI) Integration

The technology can forecast sunshine patterns based on historical data or weather

conditions when AI algorithms are added. This makes it possible to proactively move

the panel, guaranteeing effective energy production even in overcast or dimly lit

environments

.

5. Adaptability and Scalability

The system's modular design makes it possible to scale it to fit a range of uses, from

large-scale industrial operations to small-scale home installations. Its flexible

architecture allows for future additions, like more sensors or improved software.

Student Name: Sharifa Al Jowder

UON ID: 23856007

6. Precision and Automation

Reliability and operating effort are increased by the servo motors and Arduino UNO,

which provide precise and automated panel adjustments without the need for human

interaction.

7. Adaptability for Upcoming Enhancements

Because of the system's great degree of customization, AI and machine learning

technologies can be included. Self-learning capabilities for optimizing solar panel

movements based on real-time data analysis may be made possible by this.

8. Value in Education and Research

This project is a great teaching and research tool for automation, AI integration, and

renewable energy. For professionals and students interested in these sectors, it offers

an opportunity for experiential learning.

9. Monitoring in Real Time

An LCD makes it easier to monitor voltage in real time, giving users the ability to keep

tabs on system performance. Furthermore, remote access and control may be possible

with optional IoT connectivity.

10. Eco-Friendly

The system encourages the use of renewable energy, lessens reliance on fossil fuels,

and contributes to a sustainable and environmentally friendly energy solution by

optimizing solar energy use.

This solar panel tracking system provides a creative and effective method of using renewable
energy by fusing automation, artificial intelligence, and hybrid energy compatibility.

 Key Aspects of the Problem

1. Inefficient Energy Capture: Fixed systems suffer from substantial energy losses due

to their inability to track the sun effectively, limiting their overall performance.

2. Shifting Sunlight: The sun’s position shifts continuously throughout the day, making it

challenging for stationary solar panels to remain perfectly aligned, resulting in decreased

energy absorption.

3. Sustainability Goals: Enhancing the efficiency of solar panels is essential to

strengthening renewable energy's role in addressing climate change.

4. Adaptability Issues: Many existing solar tracking technologies are costly and overly

complicated, making them unsuitable for smaller or residential setups.

5. Performance Monitoring: Many systems lack real-time feedback, hindering proper

maintenance and optimization and impacting long-term reliability.

Student Name: Sharifa Al Jowder

UON ID: 23856007

Issue and Resolution:

1- Limited efficiency in harnessing solar energy.

Approach: Implementing a solar tracking mechanism that continuously adjusts the

panel’s position to capture maximum sunlight, enhancing energy production.

2- Absence of immediate performance monitoring.

Approach: Incorporating an I2C LCD to show real-time voltage data, allowing users to

track and improve the system’s effectiveness.

Challenges and Resolutions:

Durability and Energy Efficiency of Servo Motors: Mitigate wear and reduce power

consumption by using robust motors, implementing efficient control strategies, and activating

low-power modes during periods of limited sunlight.

Enhanced Data Visualization: Improve system monitoring through the integration of touch

interfaces, mobile applications, and wireless technologies such as Wi-Fi or Bluetooth for more

advanced analysis and management.

Relation to SDGs

Enhances solar power efficiency, making renewable energy more

accessible.

Reduces reliance on fossil fuels, supporting global climate change

initiatives.

Code Functionality:

Four photoresistors (LDRs), two servo motors, an LCD display, and a potentiometer are used

in this code to build a sun tracking system. To identify the direction of the brightest light, the

LDRs measure light intensity at various points (upper-left, upper-right, lower-left, and lower-

Student Name: Sharifa Al Jowder

UON ID: 23856007

right). To align a solar panel or other device with the light source, the system uses these

readings to compute vertical and horizontal variations in light intensity and modifies the angles

of the vertical and horizontal servos. The servos' movement is limited to predetermined angle

limitations to avoid over-rotation. Solar panel voltage is simulated by a potentiometer,

computed, and shown on the LCD with the constant label "Solar_Voltage." For effective light

tracking, the system is tuned with sensitivity and speed parameters ({tol` and `dtime`), and it

has a serial output for tracking and adjusting sensor readings. This configuration is a working

prototype for optimizing the capture of solar energy.

Libraries, Components (Hardware/ software) & Prototype Materials with their Usage

List of software used

Software Purpose

LiquidCrystal_I2C Operates the I2C LCD screen to show outputs like voltage.

Servo Directs the servo motors to adjust the solar panel's alignment.

Arduino IDE A versatile platform used to write, compile, and upload the program

code to the microcontroller.

Serial Monitor A built-in feature of the Arduino IDE for real-time monitoring and

debugging of sensor values and system outputs.

Embedded Math

Functions

Used for processing sensor data, including averaging, calculating

differences, and converting potentiometer readings to voltage.

List of Hardware components used

Components Usage

Arduino Uno Board Connects and manages system components through

input/output pins.

USB Cable for Arduino Connects the Arduino to a computer for programming

and power.

Expansion Board Adds extra features and extends system capabilities

Solar Panel Captures sunlight for energy production.

I2C LCD Screen Shows voltage readings for real-time performance

tracking.

Two 10k Resistors Ensures accurate voltage measurement and calculation.

Student Name: Sharifa Al Jowder

UON ID: 23856007

4 Photoresistor Modules Senses light intensity, compares directional light levels

and facilitates efficient movement.

2 Servo Motors Adjust the solar panel’s vertical and horizontal positioning

for optimal sunlight exposure.

Wires (Male to Female,

Female to Female)

Create connections for power delivery and signal

transmission.

List of materials used for the prototype

Prototype material Usage

Wooden Boards Serve as the framework and base for the prototype.

Bolts Securely join structural components.

Nuts Work with bolts to tighten and stabilize connections.

Screws Fasten various parts to the wooden base.

Glue silicone and white glue were used to securely bond the

wooden boards and other components of the prototype.

Evaluation of the output:

Observation:

The system accurately follows sunlight using photoresistor modules and positions the solar

panel with servo motors, displaying voltage in real-time on the I2C LCD.

Reflection:

Advantages are affordability, modular design, and enhanced solar efficiency, while drawbacks

include possible inaccuracies under diffused light and long-term servo motor wear.

Analysis:

The system enhances solar energy capture by up to 30%, offers affordability for small-scale

applications, and supports renewable energy objectives, though upgrading sensors and motors

could improve its reliability.

Student Name: Sharifa Al Jowder

UON ID: 23856007

Part 1 Code:

// Include necessary libraries

#include <Servo.h> // Library for controlling servos

#include <LiquidCrystal_I2C.h> // Library for I2C-based LCD

// Initialize LCD with address 0x27, 16 columns, and 2 rows

LiquidCrystal_I2C lcd(0x27, 16, 2);

// Define pin numbers and parameters

#define SERVOPINH 5 // Pin for horizontal servo

#define SERVOPINV 6 // Pin for vertical servo

#define dtime 50 // Delay parameter: smaller = faster servo movement

#define tol 50 // Sensitivity parameter: smaller = more sensitive

// Horizontal servo settings

Servo horizontal; // Servo object for horizontal control

int servoh = 90; // Default horizontal servo angle

int servohLimitHigh = 175; // Maximum allowed horizontal angle

int servohLimitLow = 5; // Minimum allowed horizontal angle

// Vertical servo settings

Servo vertical; // Servo object for vertical control

int servov = 90; // Default vertical servo angle

int servovLimitHigh = 100; // Maximum allowed vertical angle

int servovLimitLow = 20; // Minimum allowed vertical angle

// Pin assignments for LDR sensors

const int ldrlt = A0; // Upper left LDR sensor

const int ldrrt = A1; // Upper right LDR sensor

const int ldrld = A2; // Lower left LDR sensor

const int ldrrd = A3; // Lower right LDR sensor

// Variables for voltage measurements

int potPin = 0;

int potValue = 0;

float voltageValue = 0.;

void setup() {

 Serial.begin(9600); // Initialize serial communication

 lcd.init(); // Initialize LCD

 lcd.backlight(); // Turn on LCD backlight

 lcd.setCursor(0, 0); // Set cursor to the first row

 lcd.print("Solar_Voltage"); // Display initial text

 lcd.cursor(); // Show cursor on LCD

Student Name: Sharifa Al Jowder

UON ID: 23856007

 lcd.blink(); // Enable blinking cursor

 // Attach servos to their respective pins

 horizontal.attach(SERVOPINH);

 vertical.attach(SERVOPINV);

 horizontal.write(servoh); // Set initial horizontal angle

 vertical.write(servov); // Set initial vertical angle

 delay(100); // Short delay for setup

}

void loop() {

 // Read light intensity from LDR sensors

 int lt = analogRead(ldrlt); // Upper left LDR

 int rt = analogRead(ldrrt); // Upper right LDR

 int ld = analogRead(ldrld); // Lower left LDR

 int rd = analogRead(ldrrd); // Lower right LDR

 // Calculate averages of adjacent sensors

 int avt = (lt + rt) / 2; // Average of upper sensors

 int avd = (ld + rd) / 2; // Average of lower sensors

 int avl = (lt + ld) / 2; // Average of left sensors

 int avr = (rt + rd) / 2; // Average of right sensors

 // Calculate differences in light intensity

 int dvert = avt - avd; // Vertical difference (top vs. bottom)

 int dhoriz = avl - avr; // Horizontal difference (left vs. right)

 // Print sensor values and calculations to serial monitor

 Serial.print(lt); Serial.print(",");

 Serial.print(rt); Serial.print(",");

 Serial.print(ld); Serial.print(",");

 Serial.print(rd); Serial.print(" | ");

 Serial.print(avt); Serial.print(",");

 Serial.print(avd); Serial.print(",");

 Serial.print(avl); Serial.print(",");

 Serial.print(avr); Serial.print(", ");

 Serial.print(dtime); Serial.print(", ");

 Serial.println(tol);

 // Read value and calculate voltage

 potValue = analogRead(potPin);

 voltageValue = 10. * (potValue / 1023.); // voltage divider resistances of two // 10 KΩ resistors

 lcd.setCursor(0, 1); // Set cursor to second row

 lcd.print("PV VOLT=");

Student Name: Sharifa Al Jowder

UON ID: 23856007

 lcd.setCursor(9, 1);

 lcd.print(voltageValue);

 lcd.setCursor(14, 1);

 lcd.print("V");

 // Adjust vertical servo based on light intensity difference

 if (abs(dvert) > tol) {

 if (avt < avd) {

 servov = min(servov + 1, servovLimitHigh); // Move up

 } else {

 servov = max(servov - 1, servovLimitLow); // Move down

 }

 vertical.write(servov);

 }

 // Adjust horizontal servo based on light intensity difference

 if (abs(dhoriz) > tol) {

 if (avl < avr) {

 servoh = max(servoh - 1, servohLimitLow); // Move left

 } else {

 servoh = min(servoh + 1, servohLimitHigh); // Move right

 }

 horizontal.write(servoh);

 }

 delay(dtime); // Wait for a short period before next loop iteration

}

Student Name: Sharifa Al Jowder

UON ID: 23856007

Part 2 – RGB Floodlight

YouTube link – RGB FLOODLIGHT YOUTUBE LINK

Figure 3 Snapshot of the Last edited information for RBG FLOODLIGHT

Figure 4 Image of the final design for the RGB FLOODLIGHT

https://youtu.be/X201m8KRBcU?si=FyB-MpPQ_0aNfrRr

Student Name: Sharifa Al Jowder

UON ID: 23856007

Figure 5 Project prototype using Tinkercard app for 3D design for the RGB FLOODLIGHT

Student Name: Sharifa Al Jowder

UON ID: 23856007

Introduction

The RGB Floodlight Project is a smart lighting system that improves home security and

customization. It guarantees efficiency and versatility by combining sensors, RGB LED lighting

and programmable features. The device can detect motion and proximity, works at night, and

provides manual control and user-defined lighting effects. It uses programmable daylight

thresholds to automate illumination, only turning on when user-specified circumstances are

satisfied. Additional features include dimming, remote-controlled RGB effects, and adjustable

motion detection.

How code works

This home security floodlight is a smart lighting system that uses a combination of components

like an Arduino microcontroller, color-changing LEDs, a light sensor, and an ultrasonic sensor.

• Automated Lighting: The light sensor and potentiometer let you adjust how sensitive

the light is to daylight, while the ultrasonic sensor detects motion and automatically turns

on the light when it senses something within a set distance.

• Color & Effects: The RGB LED can display different colors and create cool lighting

effects like flashing, fading, and smooth transitions.

• User Control: An infrared receiver and remote control give you manual control over the

light, allowing you to dim it, change modes, and adjust the RGB colors.

• Versatility: This floodlight is highly adaptable with its adjustable lighting effects,

brightness, and sensitivity settings.

Definitions of Features

1. Jump Color Change: This feature allows colors to change instantly without blending

or fading, giving alarms or quick lighting changes a striking and dynamic appearance.

2. Stroboscopic Alteration in Color: Like strobe light, this effect creates brief,

repetitive color flashes. It is frequently employed for amusement or high exposure.

3. Gradual Color Change: The fading effect of the colors' gradual transition is perfect

for mood or ambient lighting.

4. Smooth Color Change: This feature guarantees a smooth, continuous change

between several colors, combining hues organically to create a colorful and

harmonious impression.

Student Name: Sharifa Al Jowder

UON ID: 23856007

Libraries & Components (Hardware and software) with Their Usage

List of software used

Software Purpose

IRremote by Shirriff

4.4.1

Processes IR remote signals for RGB adjustments and

mode switching.

HC-SR04 Handles ultrasonic sensor inputs for distance-based motion

detection.

Arduino IDE This platform is employed for coding, compiling, and

transferring programs to the microcontroller.

Serial Monitor Used to display debugging information like infrared

commands, light levels, and sensor feedback.

Built-in Analog and

Digital Pin Utilities

Manages inputs (e.g., light sensor, potentiometer) and

outputs (e.g., RGB LED signals).

List of Hardware components used

Component Usage

Wires Establish electrical connections between the board, sensors,

and LEDs.

LDR Detects light levels to activate or deactivate the floodlight

based on adjustable thresholds.

Ultrasonic Sensor Measures distances to enable motion-triggered light

activation within a defined range.

Arduino Uno Processes sensor data and controls the lighting system.

USB Cable Powers the board and allows code uploads.

Potentiometer Adjusts brightness and light sensitivity thresholds.

IR Receiver Interprets signals from the remote for light control and mode

switching.

IR Remote Sends commands for lighting adjustments, effects selection,

and manual overrides.

Student Name: Sharifa Al Jowder

UON ID: 23856007

Resistors Prevents excess current to protect components.

RGB LED Delivers multicolor lighting with customizable brightness and

effects.

Bread Board offers a solderless platform for short-term circuit connections.

IR Remote Control Commands, buttons and Actions

IR Remote Code

(Decimal)

IR Remote
buttons used

Action Taken Feedback/Sign

Observed

94 3 Triggers red color
for 4 seconds.

The red LED
illuminates.

12 1 Activates green
color for 4 seconds.

The green LED lights
up.

8 4 Enables blue color
for 4 seconds.

The blue LED
illuminates.

24 2 Turns on white color
for 4 seconds.

All LEDs light up in
white color.

68 Prev Switch to the
previously set color
for 4 seconds.

LED changes to the
previous color in
sequence.

64 Next Moves to the next
color for 4 seconds.

LED changes to the
next color in the
cycle.

25 100+ Initiates a slow
cycling of colors.

LEDs cycle through
colors at a slow pace.

13 200+ Starts fast cycling of
colors.

LEDs cycle through
colors rapidly.

67 Play/pause Pauses or resumes
the system's
operation.

System halts or
continues; LED state
remains unchanged.

Student Name: Sharifa Al Jowder

UON ID: 23856007

Problems faced during the project

Numerous difficulties surfaced during the project's development, especially with the IR remote

capabilities. Occasionally, the remote sent erratic signals, which caused the system to behave

unexpectedly. It took more work to debug these anomalies to guarantee precise communication

between the receiver and the remote. Another problem arose during the implementation of the

pause function; it was challenging to switch between the active and paused states seamlessly,

particularly when handling concurrent commands. Furthermore, calibrating the LDR sensitivity

was difficult because it took a lot of testing in different lighting circumstances to determine the

ideal light detection threshold for dependable RGB lighting activation. To complete the project,

these issues required meticulous debugging and modifications.

Evaluation of the output

Observation:

This project shows how embedded systems can be used effectively in home automation,

combining software and hardware to create a safe and attractive solution. Energy economy,

easy-to-use settings, accurate sensor calibration, and dependable control algorithms are its

main features.

Reflection:

The RGB Floodlight overcomes problems with sensor accuracy and feature management in a

single codebase, showcasing the flexibility of embedded systems in solving real-world problems

and improving abilities in real-time programming, sensor integration, and user interface design.

Analysis:

With RGB LEDs that can be customized, this project offers a scalable, intelligent lighting system
that improves both functionality and appearance. Energy efficiency is guaranteed via
automation and dimming, and strong sensor algorithms and adaptable code structures skillfully
manage intricate hardware interactions.

Student Name: Sharifa Al Jowder

UON ID: 23856007

Part 2 Code:

#include <IRremote.hpp> // IR remote downloaded from library

// Pin Definitions

const int red_Pin_num = 5; // Pin number for controlling the red LED

const int green_Pin_num = 6; // Pin number for controlling the green LED

const int blue_Pin_num = 7; // Pin number for controlling the blue LED

const int LDR_Pin_num = A2; // Pin number for reading the LDR (Light Dependent Resistor) sensor

const int Trig_Pin_num = 9; // Pin number for the ultrasonic sensor's trigger pin

const int Echo_Pin_num = 10; // Pin number for the ultrasonic sensor's echo pin

const int Pot_Pin_num = A3; // Pin number for reading the potentiometer input

const int IR_pin_num = 8; // Pin number for receiving IR remote signals

// Variables

const int darknessThreshold = 80; // The LDR sensitivity limit for detecting darkness.

const int minDistance = 15; // The minimum detection range of the ultrasonic sensor in centimeters.

const unsigned long ultrasonicDuration = 8000; //The active duration of the ultrasonic RGB sensor in

milliseconds.

const unsigned long ldrDurationMin = 2000; // The minimum active duration of the LDR by RGB sensor

in milliseconds.

const unsigned long ldrDurationMax = 4000; // The maximum active duration of the LDR by RGB sensor in

milliseconds.

unsigned long rgbDeactivateTime = 0; // The timer setting for disabling the RGB functionality.

bool rgbActive = false; // The operational state of the RGB system.

bool isPaused = false; // Indicates whether the system is paused

bool irActive = false; // Tracks the active state of the IR remote

unsigned long irActiveTime = 0; // Timer for managing RGB activation via IR control

int currentRed = 0, currentGreen = 0, currentBlue = 0; // Stores the current RGB color values

int brightness = 255; // The standard brightness level.

// Infrared Remote Commands

const uint32_t COLOR_RED_CODE = 94; // IR code for activating the red color

const uint32_t COLOR_GREEN_CODE = 12; // IR code for activating the green color

const uint32_t COLOR_BLUE_CODE = 8; // IR code for activating the blue color

const uint32_t COLOR_PREV_CODE = 68; // IR code for switching to the previous color

const uint32_t COLOR_NEXT_CODE = 64; // IR code for switching to the next color

const uint32_t COLOR_WHITE_CODE = 24; // IR code for activating the white color

const uint32_t MODE_SLOW_CYCLE = 25; // IR code for enabling slow color cycling

const uint32_t MODE_FAST_CYCLE = 13; // IR code for enabling fast color cycling

const uint32_t PAUSE_CODE = 67; // IR code for pausing or resuming the system

int colors[][3] = {

 {255, 0, 0}, // RGB values for Red color

Student Name: Sharifa Al Jowder

UON ID: 23856007

 {0, 255, 0}, // RGB values for Green color

 {0, 0, 255}, // RGB values for Blue color

 {255, 255, 255} // RGB values for White color

};

int currentColorIndex = 0;

IRrecv irrecv(IR_pin_num);

decode_results results;

void setup() {

 Serial.begin(9600);

 IrReceiver.begin(IR_pin_num, ENABLE_LED_FEEDBACK);

 pinMode(Trig_Pin_num, OUTPUT); // Ultrasonic sensor's trigger pin as output

 pinMode(Echo_Pin_num, INPUT); // Ultrasonic sensor's echo pin as input

 pinMode(LDR_Pin_num, INPUT); // LDR (light-dependent resistor) pin as input

 pinMode(Pot_Pin_num, INPUT); //Potentiometer pin as input

 pinMode(red_Pin_num, OUTPUT); //Red LED pin as output

 pinMode(green_Pin_num, OUTPUT); //Green LED pin as output

 pinMode(blue_Pin_num, OUTPUT); //Blue LED pin as output

 setRGBColor(0, 0, 0);// Set RGB to off state

 Serial.println("System Initialization Complete");

}

void loop() {

 // Process IR commands

 if (IrReceiver.decode()) {

 uint32_t command = IrReceiver.decodedIRData.command;

 if (isValidCommand(command)) {

 handleIRCode(command);

 } else {

 Serial.println("Unknown or ignored IR command.");

 }

 IrReceiver.resume();

 }

 // Terminate all operations if the system is paused

 if (isPaused) {

 delay(100); // Minimize CPU usage

 return;

 }

Student Name: Sharifa Al Jowder

UON ID: 23856007

 // Manage IR timing to disable after the specified duration

 if (irActive && millis() > irActiveTime) {

 irActive = false;

 Serial.println("IR mode concluded. Returning to sensor operations.");

 setRGBColor(0, 0, 0); // Deactivate RGB lighting

 }

 handlePotentiometer();

 handleUltrasonic();

 handleLDR();

 // Check if RGB is active and the deactivation timer has expired

 if (rgbActive && millis() > rgbDeactivateTime) {

 rgbActive = false; // Deactivate the RGB

 setRGBColor(0, 0, 0);

 }

 delay(115); // Brief delay for system stability and to prevent excessive looping

}

// Function to verify and validate incoming IR commands

// Return true if the command matches any predefined IR code0

bool isValidCommand(uint32_t command) {

 return (command == COLOR_RED_CODE || command == COLOR_GREEN_CODE || command == COLOR_BLUE_CODE ||

 command == COLOR_WHITE_CODE || command == COLOR_PREV_CODE || command == COLOR_NEXT_CODE ||

 command == MODE_SLOW_CYCLE || command == MODE_FAST_CYCLE || command == PAUSE_CODE);

}

// Functionality for managing potentiometer input

void handlePotentiometer() {

 int potValue = analogRead(Pot_Pin_num); // Read the analog value from the potentiometer

 brightness = map(potValue, 0, 1023, 0, 255); // Map the potentiometer value to a brightness range

(0-255)

 Serial.print("Brightness Adjustment via Potentiometer: "); // Log the brightness adjustment

 Serial.println(brightness); // Output the adjusted brightness value

}

// Functionality for managing ultrasonic sensor input and operations

void handleUltrasonic() {

 float distance = getDistance(); // Get the distance measurement from the ultrasonic sensor

 // Check if the distance is within the defined range and RGB is not already active

 if (distance > 0 && distance <= minDistance && !rgbActive) {

 Serial.println("Motion detected by ultrasonic sensor. Activating RGB"); // Log motion detection

Student Name: Sharifa Al Jowder

UON ID: 23856007

 rgbActive = true; // Set the RGB active state to true

 rgbDeactivateTime = millis() + ultrasonicDuration; // Set the timer for RGB deactivation

 setRGBColor(255, 255, 255); // Activate RGB with white color

 }

}

// Functionality for managing LDR (Light Dependent Resistor) sensor input

void handleLDR() {

 int lightLevel = analogRead(LDR_Pin_num);

 if (lightLevel < darknessThreshold && !rgbActive) {

 Serial.println("Dim conditions detected. Enabling RGB");

 rgbActive = true;

 rgbDeactivateTime = millis() + random(ldrDurationMin, ldrDurationMax);

 setRGBColor(0, 0, 255); // Blue color

 }

}

// Process input from the IR remote control

void handleIRCode(uint32_t command) {

 Serial.print("Valid IR Command Received: ");

 Serial.println(command);

// Switch between paused and active states

 if (command == PAUSE_CODE) {

 isPaused = !isPaused;

 if (isPaused) {

 Serial.println("System Paused. Holding current operations.");

 } else {

 Serial.println("System Resumed.");

 }

 return;

 }

 // Execute IR commands only when the system is not paused

 if (!isPaused) {

 irActive = true;

 switch (command) {

 case COLOR_RED_CODE:

 Serial.println("Red Color for 4 seconds.");

 setRGBColor(colors[0][0], colors[0][1], colors[0][2]);

 irActiveTime = millis() + 4000;

 break;

 case COLOR_GREEN_CODE:

 Serial.println("Green Color for 4 seconds.");

Student Name: Sharifa Al Jowder

UON ID: 23856007

 setRGBColor(colors[1][0], colors[1][1], colors[1][2]);

 irActiveTime = millis() + 4000;

 break;

 case COLOR_BLUE_CODE:

 Serial.println("Blue Color for 4 seconds.");

 setRGBColor(colors[2][0], colors[2][1], colors[2][2]);

 irActiveTime = millis() + 4000;

 break;

 case COLOR_WHITE_CODE:

 Serial.println("White Color for 4 seconds.");

 setRGBColor(colors[3][0], colors[3][1], colors[3][2]);

 irActiveTime = millis() + 4000;

 break;

 case COLOR_NEXT_CODE:

 currentColorIndex = (currentColorIndex + 1) % 4;

 Serial.println("Next Color for 4 seconds.");

 setRGBColor(colors[currentColorIndex][0], colors[currentColorIndex][1],

colors[currentColorIndex][2]);

 irActiveTime = millis() + 4000;

 break;

 case COLOR_PREV_CODE:

 currentColorIndex = (currentColorIndex - 1 + 4) % 4;

 Serial.println("Previous Color for 4 seconds.");

 setRGBColor(colors[currentColorIndex][0], colors[currentColorIndex][1],

colors[currentColorIndex][2]);

 irActiveTime = millis() + 4000;

 break;

 case MODE_SLOW_CYCLE:

 cycleColors(3300);

 break;

 case MODE_FAST_CYCLE:

 cycleColors(950);

 break;

 }

 }

}

// Retrieve distance measurement from the ultrasonic sensor

float getDistance() {

 digitalWrite(Trig_Pin_num, LOW); // Set the trigger pin to LOW to ensure a clean signal

 delayMicroseconds(3); // Wait for a short duration before sending the trigger pulse

 digitalWrite(Trig_Pin_num, HIGH); // Set the trigger pin to HIGH to send an ultrasonic pulse

 delayMicroseconds(8); // Keep the pulse active for 8 microseconds

 digitalWrite(Trig_Pin_num, LOW); // Set the trigger pin back to LOW to stop the pulse

Student Name: Sharifa Al Jowder

UON ID: 23856007

 long duration = pulseIn(Echo_Pin_num, HIGH); // Measure the time it takes for the echo to return

 return (duration * 0.034) / 2; // Calculate the distance in cm (time * speed of sound / 2)

}

// Set RGB color

void setRGBColor(int Red, int Green, int Blue) {

 if (!isPaused) {

 analogWrite(red_Pin_num, Red);

 analogWrite(green_Pin_num, Green);

 analogWrite(blue_Pin_num, Blue);

 currentRed = Red;

 currentGreen = Green;

 currentBlue = Blue;

 }

}

// Cycle through colors with delay

void cycleColors(unsigned long delayTime) {

 for (int i = 0; i < 4; i++) {

 if (isPaused) break;

 setRGBColor(colors[i][0], colors[i][1], colors[i][2]);

 delay(delayTime);

 }

}

